Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
1.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717801

RESUMO

Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.


Assuntos
Adaptação Fisiológica , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/fisiologia , Concentração de Íons de Hidrogênio , Animais , Humanos , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico , Macrófagos/microbiologia , Virulência , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Antituberculosos/farmacologia
2.
Biomolecules ; 14(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672491

RESUMO

Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas , Macrófagos , Mycobacterium tuberculosis , Fator de Necrose Tumoral alfa , Humanos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/tratamento farmacológico
3.
Nat Commun ; 13(1): 78, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013257

RESUMO

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.


Assuntos
Antígenos CD1/imunologia , Glicolipídeos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Antígenos CD1/genética , Complexo CD3/genética , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Citotoxicidade Imunológica , Expressão Gênica , Glicolipídeos/metabolismo , Humanos , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mycobacterium tuberculosis/crescimento & desenvolvimento , Cultura Primária de Células , Ligação Proteica , Multimerização Proteica , Transdução Genética , Tuberculose/genética , Tuberculose/microbiologia
4.
Front Immunol ; 12: 779235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925356

RESUMO

The host immune system plays a pivotal role in the containment of Mycobacterium tuberculosis (Mtb) infection, and host-directed therapy (HDT) is emerging as an effective strategy to treat tuberculosis (TB), especially drug-resistant TB. Previous studies revealed that expression of sirtuin 7 (SIRT7), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, was downregulated in macrophages after Mycobacterial infection. Inhibition of SIRT7 with the pan-sirtuin family inhibitor nicotinamide (NAM), or by silencing SIRT7 expression, promoted intracellular growth of Mtb and restricted the generation of nitric oxide (NO). Addition of the exogenous NO donor SNAP abrogated the increased bacterial burden in NAM-treated or SIRT7-silenced macrophages. Furthermore, SIRT7-silenced macrophages displayed a lower frequency of early apoptotic cells after Mycobacterial infection, and this could be reversed by providing exogenous NO. Overall, this study clarified a SIRT7-mediated protective mechanism against Mycobacterial infection through regulation of NO production and apoptosis. SIRT7 therefore has potential to be exploited as a novel effective target for HDT of TB.


Assuntos
Apoptose , Macrófagos/enzimologia , Mycobacterium tuberculosis/imunologia , Óxido Nítrico/metabolismo , Fagocitose , Sirtuínas/metabolismo , Tuberculose/enzimologia , Animais , Antituberculosos/farmacologia , Apoptose/efeitos dos fármacos , Carga Bacteriana , Interações Hospedeiro-Patógeno , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Doadores de Óxido Nítrico/farmacologia , Células RAW 264.7 , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais , Sirtuínas/genética , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/microbiologia
5.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834115

RESUMO

What if a new technology based on therapeutic deep eutectic systems would disrupt the current treatment of major economic and socially burden diseases? The classical definition of eutectic systems is that they are the combination of two or more compounds that interact via hydrogen bonds, from which results a melting temperature depression in comparison with that of its individual components. Therapeutic deep eutectic systems are defined as eutectic systems in which at least one of the individual components is an active pharmaceutical ingredient, or a eutectic system in which the active pharmaceutical ingredient is dissolved. Current literature reports on tuberculosis have been mostly based on the most common anti-tuberculosis drugs prescribed. Using eutectic systems based on naturally occurring molecules known for their anti-microbial activity may also present a promising therapeutic strategy able to cope with the prevalence of Mycobacterium tuberculosis and prevent the appearance of multidrug resistance strains. With regards to colorectal cancer, literature has been unravelling combinations of terpenes with anti-inflammatory drugs that are selectively cytotoxic towards colorectal cancer cells and do not compromise the viability of normal intestinal cells. This technology could contribute to preventing tumor growth and metastasis while providing a patient compliance therapeutics, which will be crucial to the success of overcoming the challenges presented by cancers.


Assuntos
Antineoplásicos/uso terapêutico , Antituberculosos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos
6.
Front Immunol ; 12: 656419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745081

RESUMO

Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.


Assuntos
Antituberculosos/uso terapêutico , Berberina/uso terapêutico , Fatores Imunológicos/uso terapêutico , Isoniazida/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Berberina/farmacologia , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Humanos , Fatores Imunológicos/farmacologia , Isoniazida/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Rifampina/farmacologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
7.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502303

RESUMO

Mycobacterium tuberculosis (M.tb), the pathogen causing tuberculosis, is a major threat to human health worldwide. Nearly 10% of M.tb genome encodes for a unique family of PE/PPE/PGRS proteins present exclusively in the genus Mycobacterium. The functions of most of these proteins are yet unexplored. The PGRS domains of these proteins have been hypothesized to consist of Ca2+ binding motifs that help these intrinsically disordered proteins to modulate the host cellular responses. Ca2+ is an important secondary messenger that is involved in the pathogenesis of tuberculosis in diverse ways. This study presents the calcium-dependent function of the PGRS domain of Rv0297 (PE_PGRS5) in M.tb virulence and pathogenesis. Tandem repeat search revealed the presence of repetitive Ca2+ binding motifs in the PGRS domain of the Rv0297 protein (Rv0297PGRS). Molecular Dynamics simulations and fluorescence spectroscopy revealed Ca2+ dependent stabilization of the Rv0297PGRS protein. Calcium stabilized Rv0297PGRS enhances the interaction of Rv0297PGRS with surface localized Toll like receptor 4 (TLR4) of macrophages. The Ca2+ stabilized binding of Rv0297PGRS with the surface receptor of macrophages enhances its downstream consequences in terms of Nitric Oxide (NO) production and cytokine release. Thus, this study points to hitherto unidentified roles of calcium-modulated PE_PGRS proteins in the virulence of M.tb. Understanding the pathogenic potential of Ca2+ dependent PE_PGRS proteins can aid in targeting these proteins for therapeutic interventions.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Macrófagos/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Conformação Proteica , Homologia de Sequência
8.
Sci Rep ; 11(1): 18013, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504225

RESUMO

To investigate associations between isoniazid for latent tuberculosis and risk of severe hepatitis, affecting patients with rheumatoid arthritis or ankylosing spondylitis whose treatment includes tumor necrosis factor inhibitors. Our self-controlled case series study analyzed Taiwan's National Health Insurance Database from 2003 to 2015 to identify RA or AS patients, aged ≥ 20 years, receiving TNF inhibitors and a 9-month single isoniazid treatment. The outcome of interest was hospitalization due to severe hepatitis. We defined risk periods by isoniazid exposure (days): 1-28, 29-56, 57-84, 85-168, 169-252, and 253-280. To compare risk of severe hepatitis in exposed and non-exposed periods, we performed conditional Poisson regressions to generate incidence rate ratios (IRR) and 95% confidence intervals, with adjustment of patients' baseline covariates including age, sex, HBV, HCV and related medication. Of 54,267 RA patients and 137,889 AS patients identified between 2000 and 2015, 11,221 (20.7%) RA and 4,208 (3.1%) AS patients underwent TNFi therapy, with 722 (5%) receiving isoniazid for latent tuberculosis. We identified 31 incident cases (4.3%) of hospitalization due to severe hepatitis. Of these hospitalization events, 5 occurred in the exposed periods, 25 occurred in the INH unexposed periods, and 1 occurred in the pre-exposure period. Compared with non-exposure, the risk of severe hepatitis was higher in exposed periods (incidence rate ratio [IRR]: 5.1, 95% CI: 1.57-16.55), especially 57-84 days (IRR: 17.29, 95% CI: 3.11-96.25) and 85-168 days (IRR:10.55, 95% CI: 1.90-58.51). The INH related fatal hepatotoxicity was not identified in our study. Our findings suggest an association between risk of severe hepatitis and exposure to isoniazid in patients with RA or AS under TNFi therapy, particularly within the exposed period 57-168 days. A close monitoring of liver function is mandatory to minimize the risk, especially within the first 6 months after initiation of 9 months isoniazid.


Assuntos
Antituberculosos/efeitos adversos , Artrite Reumatoide/prevenção & controle , Hepatite/diagnóstico , Isoniazida/efeitos adversos , Tuberculose Latente/prevenção & controle , Espondilite Anquilosante/prevenção & controle , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Adulto , Idoso , Antituberculosos/administração & dosagem , Artrite Reumatoide/complicações , Artrite Reumatoide/microbiologia , Feminino , Hepatite/etiologia , Hepatite/patologia , Hospitalização/estatística & dados numéricos , Humanos , Isoniazida/administração & dosagem , Tuberculose Latente/complicações , Tuberculose Latente/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Profilaxia Pós-Exposição/métodos , Medição de Risco , Índice de Gravidade de Doença , Espondilite Anquilosante/complicações , Espondilite Anquilosante/microbiologia
9.
J Microbiol Biotechnol ; 31(12): 1632-1642, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584040

RESUMO

Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis. It affects about 10 million people each year and is still one of the leading causes of death worldwide. About 2 to 3 billion people (equivalent to 1 in 3 people in the world) are infected with latent tuberculosis. Moreover, as the number of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains of M. tuberculosis continues to increase, there is an urgent need to develop new anti-tuberculosis drugs that are different from existing drugs to combat antibiotic-resistant M. tuberculosis. Against this background, we aimed to develop new anti-tuberculosis drugs using probiotics. Here, we report the anti-tuberculosis effect of Pediococcus acidilactici PMC202 isolated from young radish kimchi, a traditional Korean fermented food. Under coculture conditions, PMC202 inhibited the growth of M. tuberculosis. In addition, PMC202 inhibited the growth of drug-sensitive and -resistant M. tuberculosis- infected macrophages at a concentration that did not show cytotoxicity and showed a synergistic effect with isoniazid. In a 2-week, repeated oral administration toxicity study using mice, PMC202 did not cause weight change or specific clinical symptoms. Furthermore, the results of 16S rRNA-based metagenomics analysis confirmed that dysbiosis was not induced in bronchoalveolar lavage fluid after oral administration of PMC202. The anti-tuberculosis effect of PMC202 was found to be related to the reduction of nitric oxide. Our findings indicate that PMC202 could be used as an anti-tuberculosis drug candidate with the potential to replace current chemicalbased drugs. However, more extensive toxicity, mechanism of action, and animal efficacy studies with clinical trials are needed.


Assuntos
Alimentos Fermentados/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pediococcus acidilactici/fisiologia , Raphanus/microbiologia , Animais , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Meios de Cultivo Condicionados/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Microbiota , Mycobacterium tuberculosis/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Pediococcus acidilactici/isolamento & purificação , Probióticos/administração & dosagem , Probióticos/farmacologia , Células RAW 264.7 , RNA Ribossômico 16S/genética
10.
Methods Mol Biol ; 2314: 167-182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235652

RESUMO

Mycobacterium tuberculosis colonizes, survives, and grows inside macrophages. In vitro macrophage infection models, using both primary macrophages and cell lines, enable the characterization of the pathogen response to macrophage immune pressure and intracellular environmental cues. We describe methods to propagate and infect primary murine bone marrow-derived macrophages, HoxB8 conditionally immortalized myeloid cells, Max Planck Institute alveolar macrophage-like cells, and J774 and THP-1 macrophage-like cell lines. We also present methods on the characterization of M. tuberculosis intracellular survival and the preparation of infected macrophages for imaging.


Assuntos
Macrófagos Alveolares/microbiologia , Macrófagos/microbiologia , Imagem Molecular/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Células Mieloides/microbiologia , Animais , Células Cultivadas , Humanos , Técnicas In Vitro , Macrófagos/patologia , Macrófagos Alveolares/patologia , Camundongos , Mycobacterium tuberculosis/patogenicidade , Células Mieloides/patologia
11.
Methods Mol Biol ; 2314: 247-260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235656

RESUMO

Non-replicating persistence (NRP) is a functional adaptation that mycobacteria undergo in response to the stresses of the granuloma, facilitating antibiotic tolerance and long-term infection. These stresses, or NRP-inducing factors, include hypoxia, nutrient deprivation, and nitric oxide assault, which mycobacteria are well evolved to tolerate through a series of metabolic and physiological adaptations producing the NRP state. Most attempts to replicate these conditions in vitro have focused on only one of these factors at a time for ease and simplicity, but as a result, do not necessarily produce physiologically relevant phenotypes. Here, we provide the methods for two different in vitro NRP strategies that are useful for drug susceptibility testing and high-throughput screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hipóxia/fisiopatologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nutrientes/metabolismo , Oxigênio/metabolismo , Preparações Farmacêuticas/administração & dosagem , Estresse Fisiológico , Humanos , Técnicas In Vitro , Mycobacterium tuberculosis/efeitos dos fármacos
12.
Methods Mol Biol ; 2314: 637-648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235674

RESUMO

The concept of antimicrobial susceptibility testing is an essential part of clinical microbiology. Antimicrobial testing has played a central role in the identification of new antibiotics and defining their clinical uses. Here we describe different approaches to determine the activity of compounds in medium or high-throughput format.


Assuntos
Trifosfato de Adenosina/metabolismo , Antituberculosos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos
13.
Methods Mol Biol ; 2314: 649-702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235675

RESUMO

Mycobacterium tuberculosis is able to colonize, persist, and massively replicate in host cells, such as phagocytes and epithelial cells. The intracellular stage of the bacteria is critical to the development of tuberculosis pathogenesis. The detailed mechanisms of intracellular trafficking of the bacillus are not fully understood and require further investigations. Therefore, increasing the knowledge of this process will help to develop therapeutic tools that will lower the burden of tuberculosis. M. tuberculosis is genetically tractable and tolerates the expression of heterologous fluorescent proteins. Thus, the intracellular distribution of the bacteria expressing fluorescent tracers can be easily defined using confocal microscopy. Advances in imaging techniques and images-based analysis allow the rapid quantification of biological objects in complex environments. In this chapter, we detailed high-content / high-throughput imaging methods to track the bacillus within host cell settings.


Assuntos
Células Dendríticas/microbiologia , Células Epiteliais/microbiologia , Ensaios de Triagem em Larga Escala/métodos , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fagócitos/microbiologia , Tuberculose/microbiologia , Animais , Células Dendríticas/metabolismo , Testes Diagnósticos de Rotina , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Mycobacterium tuberculosis/patogenicidade , Estresse Oxidativo , Fagócitos/metabolismo , Espécies Reativas de Oxigênio , Tuberculose/metabolismo
14.
mBio ; 12(4): e0166521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311585

RESUMO

Mycofactocin is a new class of peptide-derived redox cofactors present in a selected group of bacteria including Mycobacterium tuberculosis. Mycofactocin biosynthesis requires at least six genes, including mftD, encoding putative lactate dehydrogenase, which catalyzes the penultimate biosynthetic step. Cellular functions remained unknown until recent reports on the significance of mycofactocin in primary alcohol metabolism. Here, we show that mftD transcript levels were increased in hypoxia-adapted M. tuberculosis; however, mftD functionality was found likely dispensable for l-lactate metabolism. Targeted deletion of mftD reduced the survival of M. tuberculosis in in vitro and in vivo hypoxia models but increased the bacterial growth in glucose-containing broth as well as in the lungs and spleens, albeit modestly, of aerosol-infected C57BL/6J mice. The cause of this growth advantage remains unestablished; however, the mftD-deficient M. tuberculosis strain had reduced NAD(H)/NADP(H) levels and glucose-6-phosphate dehydrogenase activity with no impairment in phthiocerol dimycocerosate lipid synthesis. An ultrastructural examination of parental and mycofactocin biosynthesis gene mutants in M. tuberculosis, M. marinum, and M. smegmatis showed no altered cell morphology and size except the presence of outer membrane-bound fibril-like features only in a mutant subpopulation. A cell surface-protein analysis of M. smegmatis mycofactocin biosynthesis mutants with trypsin revealed differential abundances of a subset of proteins that are known to interact with mycofactocin and their homologs that can enhance protein aggregation or amyloid-like fibrils in riboflavin-starved eukaryotic cells. In sum, phenotypic analyses of the mutant strain implicate the significance of MftD/mycofactocin in M. tuberculosis growth and persistence in its host. IMPORTANCE Characterization of proteins with unknown functions is a critical research priority as the intracellular growth and metabolic state of Mycobacterium tuberculosis, the causative agent of tuberculosis, remain poorly understood. Mycofactocin is a peptide-derived redox cofactor present in almost all mycobacterial species; however, its functional relevance in M. tuberculosis pathogenesis and host survival has never been studied experimentally. In this study, we examine the phenotypes of an M. tuberculosis mutant strain lacking a key mycofactocin biosynthesis gene in in vitro and disease-relevant mouse models. Our results pinpoint the multifaceted role of mycofactocin in M. tuberculosis growth, hypoxia adaptation, glucose metabolism, and redox homeostasis. This evidence strongly implies that mycofactocin could fulfill specialized biochemical functions that increase the survival fitness of mycobacteria within their specific niche.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Peptídeos/metabolismo , Anaerobiose , Animais , Vias Biossintéticas , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Peptídeos/genética
15.
PLoS Biol ; 19(7): e3001355, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319985

RESUMO

Sensing and response to environmental cues, such as pH and chloride (Cl-), is critical in enabling Mycobacterium tuberculosis (Mtb) colonization of its host. Utilizing a fluorescent reporter Mtb strain in a chemical screen, we have identified compounds that dysregulate Mtb response to high Cl- levels, with a subset of the hits also inhibiting Mtb growth in host macrophages. Structure-activity relationship studies on the hit compound "C6," or 2-(4-((2-(ethylthio)pyrimidin-5-yl)methyl)piperazin-1-yl)benzo[d]oxazole, demonstrated a correlation between compound perturbation of Mtb Cl- response and inhibition of bacterial growth in macrophages. C6 accumulated in both bacterial and host cells, and inhibited Mtb growth in cholesterol media, but not in rich media. Subsequent examination of the Cl- response of Mtb revealed an intriguing link with bacterial growth in cholesterol, with increased transcription of several Cl--responsive genes in the simultaneous presence of cholesterol and high external Cl- concentration, versus transcript levels observed during exposure to high external Cl- concentration alone. Strikingly, oral administration of C6 was able to inhibit Mtb growth in vivo in a C3HeB/FeJ murine infection model. Our work illustrates how Mtb response to environmental cues can intersect with its metabolism and be exploited in antitubercular drug discovery.


Assuntos
Antituberculosos/farmacologia , Desenvolvimento de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/química , Cloretos/metabolismo , Colesterol/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Relação Estrutura-Atividade
16.
Nat Commun ; 12(1): 3816, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155215

RESUMO

To be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.


Assuntos
Antituberculosos/farmacologia , Citosol/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Antituberculosos/farmacocinética , Diarilquinolinas/farmacocinética , Diarilquinolinas/farmacologia , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Microscopia Eletrônica , Mutação , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Pirazinamida/farmacocinética , Sistemas de Secreção Tipo VII/genética
17.
Ann Med ; 53(1): 576-580, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33969770

RESUMO

BACKGROUND: A few studies have mentioned that post-bronchoscopy sputum (PBS) could improve the diagnostic yield in pauci-bacillary pulmonary tuberculosis (PTB). Therefore, we evaluated the diagnostic yield of PBS for diagnosing pauci-bacillaryPTB. METHODS: Clinical data of immunocompromised adult patients with pauci-bacillary PTB were retrospectively retrieved at a tertiary hospital in Seoul, South Korea over a 5-year period. We analyzed patients who underwent bronchoscopy examinations for diagnosing pauci-bacillary PTB. RESULTS: Ninety patients were finally analyzed. Of these patients, 76 patients were tested with PBS. Six (8%) of these patients had positive results on AFB smear of PBS alone. Additionally, 52 patients (68%) had positive results on mycobacterial culture and 12 (16%) had positive results on mycobacterial culture of PBS exclusively. Therefore, in this study population, a total of 18 patients (20%) were finally diagnosed as having PTB with PBS results only, even though AFB smear microscopy and culture of other specimens had negative results. CONCLUSIONS: PBS could improve the diagnostic yield by 20% when diagnosing pauci-bacillary PTB. In addition, about 8% of the patients could be diagnosed rapidly because of AFB smear microscopy positivity for PBS. Therefore, PBS use should be considered as a complementary diagnostic approach in patients with suspected pauci-bacillary PTB.


Assuntos
Broncoscopia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Complicações Pós-Operatórias/diagnóstico , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Idoso , Feminino , Humanos , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/microbiologia , Período Pós-Operatório , República da Coreia , Estudos Retrospectivos , Tuberculose Pulmonar/microbiologia
18.
Front Immunol ; 12: 666293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017340

RESUMO

Although Mycobacterium tuberculosis (Mtb) is an intracellular pathogen in phagocytic cells, the factors and mechanisms by which they invade and persist in host cells are still not well understood. Characterization of the bacterial proteins modulating macrophage function is essential for understanding tuberculosis pathogenesis and bacterial virulence. Here we investigated the pathogenic role of the Rv2145c protein in stimulating IL-10 production. We first found that recombinant Rv2145c stimulated bone marrow-derived macrophages (BMDMs) to secrete IL-10, IL-6 and TNF-α but not IL-12p70 and to increase the expression of surface molecules through the MAPK, NF-κB, and TLR4 pathways and enhanced STAT3 activation and the expression of IL-10 receptor in Mtb-infected BMDMs. Rv2145c significantly enhanced intracellular Mtb growth in BMDMs compared with that in untreated cells, which was abrogated by STAT3 inhibition and IL-10 receptor (IL-10R) blockade. Expression of Rv2145c in Mycobacterium smegmatis (M. smegmatis) led to STAT3-dependent IL-10 production and enhancement of intracellular growth in BMDMs. Furthermore, the clearance of Rv2145c-expressing M. smegmatis in the lungs and spleens of mice was delayed, and these effects were abrogated by administration of anti-IL-10R antibodies. Finally, all mice infected with Rv2145c-expressing M. smegmatis died, but those infected with the vector control strain did not. Our data suggest that Rv2145c plays a role in creating a favorable environment for bacterial survival by modulating host signals.


Assuntos
Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/patogenicidade , Receptores de Interleucina-10/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Proteínas de Bactérias/genética , Interleucina-10/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Receptores de Interleucina-10/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Virulência
19.
Tuberculosis (Edinb) ; 128: 102079, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812176

RESUMO

Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_1916 is annotated as a D-amino acid oxidase (DAO). These enzymes perform conversion of d-amino acids to corresponding imino acids followed by conversion into α-keto-acids. In the present study Mtb-Ra recombinants with DAO knockout (KO) and knockout complemented with DAO over-expressing plasmid (KOC) were constructed. The growth studies showed loss of growth of KO in medium containing glycerol as a primary carbon source. Substituting glycerol with acetate or with FBS addition, restored the growth. Growth was also restored in complemented strain (KOC). KO showed increased permeability to hydrophilic dye EtBr and reduced biofilm formation. Also, its survival in macrophages was low. Phagosome maturation studies suggested enhanced colocalization of KO, compared to WT, with lysosomal marker cathepsin D. Also, an increased intensity of Rab5 and iNOS was observed in macrophages infected with KO, compared to WT and KOC. The in vivo survival studies showed no increase in CFU of KO. This is the first study to show functional relevance of DAO encoded by MRA_1916 for Mtb-Ra growth on glycerol, its permeability and biofilm formation. Also, this study clearly demonstrates that DAO deletion leads to Mtb-Ra failing to grow in macrophages and in mice.


Assuntos
Biofilmes/crescimento & desenvolvimento , D-Aminoácido Oxidase/genética , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Animais , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/crescimento & desenvolvimento
20.
Metallomics ; 13(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33693931

RESUMO

The treatment of tuberculosis (TB) poses a major challenge as frontline therapeutic agents become increasingly ineffective with the emergence and spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). To combat this global health problem, new antitubercular agents with novel modes of action are needed. We have screened a close family of 17 organometallic half-sandwich Os(II) complexes [(arene)Os(phenyl-azo/imino-pyridine)(Cl/I)]+Y- containing various arenes (p-cymene, biphenyl, or terphenyl), and NMe2, F, Cl, or Br phenyl or pyridyl substituents, for activity towards Mtb in comparison with normal human lung cells (MRC5). In general, complexes with a monodentate iodido ligand were more potent than chlorido complexes, and the five most potent iodido complexes (MIC 1.25-2.5 µM) have an electron-donating Me2N or OH substituent on the phenyl ring. As expected, the counter anion Y (PF6-, Cl-, I-) had little effect on the activity. The pattern of potency of the complexes towards Mtb is similar to that towards human cells, perhaps because in both cases intracellular thiols are likely to be involved in their activation and their redox mechanism of action. The most active complex against Mtb is the p-cymene Os(II) NMe2-phenyl-azopyridine iodido complex (2), a relatively inert complex that also exhibits potent activity towards cancer cells. The uptake of Os from complex 2 by Mtb is rapid and peaks after 6 h, with temperature-dependence studies suggesting a major role for active transport. Significance to Metallomics Antimicrobial resistance is a global health problem. New advances are urgently needed in the discovery of new antibiotics with novel mechanisms of action. Half-sandwich organometallic complexes offer a versatile platform for drug design. We show that with an appropriate choice of the arene, an N,N-chelated ligand, and monodentate ligand, half-sandwich organo-osmium(II) complexes can exhibit potent activity towards Mycobacterium tuberculosis (Mtb), the leading cause of death from a single infectious agent. The patterns of activity of the 17 azo- and imino-pyridine complexes studied here towards Mtb and normal lung cells suggest a common redox mechanism of action involving intracellular thiols.


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Osmio/química , Tuberculose/tratamento farmacológico , Antineoplásicos/química , Antituberculosos/química , Proliferação de Células , Humanos , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Compostos Organometálicos/química , Tuberculose/microbiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA